If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.7x^2-50x+3.5=0
a = 2.7; b = -50; c = +3.5;
Δ = b2-4ac
Δ = -502-4·2.7·3.5
Δ = 2462.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-\sqrt{2462.2}}{2*2.7}=\frac{50-\sqrt{2462.2}}{5.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+\sqrt{2462.2}}{2*2.7}=\frac{50+\sqrt{2462.2}}{5.4} $
| -6+v/8=-4 | | 1836=612+25.50x | | x=(1/3(16))+4 | | 5x+13=10×+12 | | 25t=1225 | | 32=-8f-9f | | X^2-40x+1700=0 | | -7x+5x+2+3x=|0-9|-|-4+2| | | r=25−3r | | -12x-196=54-2x | | x=1/3(16)+4 | | -9x-22=48-7x | | -8c+7-2=18 | | 9u=32+5u | | 2x=+20 | | 14=9v+8 | | -103-2x=9x+95 | | 8(3/4y+5/4)-5y=11 | | -(19-3y)-(8y+1)=35 | | +8-x=-4 | | 6n,n=7 | | 3x^2(9x^2-16)=0 | | 3-8(1+5b)=25 | | 13+1/2x=37 | | -42-3x=-3x=14-x | | x=1/3X16 | | (4x-7)^.5=(2x)^.5+1 | | 6x+2*1.5=9 | | -101-11x=-3x+43 | | -8x-14=7(-2-3x)+4x | | 11x=55= | | 4z/z-4+2/z-2=-3 |